Minimal surfaces of the form $f(x)+g(y)+h(z)=0$
Consider the non-linear partial differential equation

$$
\begin{equation*}
z_{x x}\left(1+z_{y}^{2}\right)+z_{y y}\left(1+z_{x}^{2}\right)=2 z_{x} z_{y} z_{x y} \tag{1}
\end{equation*}
$$

whose solutions $z(x, y)$ correspond to 'minimal' surfaces in \mathbb{R}^{3} locally described as graphs, i.e. giving the height z over a point (x, y). Inserting the Ansats

$$
\begin{equation*}
z(x, y)=\zeta(f(x)+g(y)) \tag{2}
\end{equation*}
$$

into (1) gives a differential equation $\left(^{*}\right)$ in which the first and second derivatives of the 3 functions f, g and ζ appear (each being a function of one variable). Using the notation $-h$ for the inverse of ζ, i.e. with $\zeta(-h(z))=z$, show that (*) becomes

$$
\begin{equation*}
f^{\prime \prime}(x)\left(g^{\prime}(y)^{2}+h^{\prime}(z)^{2}\right)+g^{\prime \prime}\left(h^{\prime 2}+f^{\prime 2}\right)+h^{\prime \prime}\left(f^{\prime 2}+g^{\prime 2}\right)=0 \tag{3}
\end{equation*}
$$

-which does not have to hold for all $x, y, z \in \mathbb{R}$, but only for those satisfying

$$
\begin{equation*}
f(x)+g(y)+h(z)=0 . \tag{4}
\end{equation*}
$$

Find solutions (the more the better) of (3)/(4) assuming that, with some constants $\gamma, a_{i}, b_{i}, c_{i}(i=1,2,3)$

$$
\begin{equation*}
f_{i}^{\prime 2}\left(x_{i}\right)=a_{i}+b_{i} e^{\gamma f_{i}}+c_{i} e^{-\gamma f_{i}} \tag{5}
\end{equation*}
$$

-having switched here to the notation $x_{1}=x, x_{2}=y, x_{3}=z, f_{1}=f, f_{2}=$ $g, f_{3}=h$. What conditions do the $a_{i}, b_{i}, c_{i}, i=1,2,3$, have to satisfy so that the Ansats (5) solves (3), resp. (2) solves (1). Show that the 4 surfaces given by

$$
\begin{array}{cc}
S_{1}: & y \cos z=x \sin z \\
S_{2}: & x^{2}+y^{2}=(\cosh z)^{2} \\
S_{3}: & \sin z=\sinh x \sinh y \\
S_{4}: & e^{z} \cos x=\cos y \tag{9}
\end{array}
$$

are of the form (4), and (except for S_{2} for which (3) can be verified directly) for appropriately chosen f_{i} and constants $a_{i}, b_{i}, c_{i}, \gamma$ satisfy (5), resp. (3). Try to draw (at least sketch) the 4 surfaces, resp. describe some of their properties in words.

